
ITERATIVE METHOD FOR GENERALIZED INVERSION OF MATRICES 439 

A Note on an Iterative Method for 
Generalized Inversion of Matrices* 

By Adi Ben-Israel 

The iterative method of Schulz [4], [3] for matrix inversion was generalized in [1] 
as follows: 

THEOREM 1. The sequence of matrices defined by 

(1X) 7k+l = Xk(2PR(A) - AXk) (k = 0, 1, .*) 

where Xo is an n X m complex matrix satisfying 

(2) Xo = A*Bo, Bo some nonsingular m X m matrix, 

(3) Xo = CoA*, CO some nonsingular n X n matrix, 

(4) AXo- PR(A) < 1, (II fl any matrix norm [3]), 

(5) XoA - PR(A*) || < 1, 

converges to the generalized inverse A+ of A. 
As pointed out in [1], the computational significance of the method (1) is 

limited by the need for knowledge of PR(A) (and of PR(A*) if condition (5) is to be 
checked). This difficulty is evaded in the following theorem. 

THEOREM 2. Let A be an arbitrary (nonzero) complex m X n matrix of rank r 
and let 

XI(AA*) ? X2(AA*) > ... > X,(AA*) 

denote the nonzero eigenvalues of AA*. If the real scalar a satisfies 

(6) 0 < a < 2(AA) 

then the sequence defined by: 

(7) XO = aA* 

(8) Xk+l = Xk(21-AXk) (k = 0,1, ..* ). 

converges to A+ as k - oo. 
Proof. Xo defined by (7), (6) satisfies (2), (3), (4) and (5). To prove that 

Xo of (7), (6) satisfies (4) we note that AA+ (=PR(A)) and AA* are commuting 
Hermitian matrices with the same range space. The eigenvalues of the m X m 
matrix: AXo - PR(A) = aAA* -AA+ are therefore 

(9) faXi(AA*) -1 (i , * *, r) 
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and, by (6), are all: <1 in absolute value: 

(10) Xi(aAA* - AA+) < 1 (i = 1, ,m) 

similarly 

(11) lSXi(aA*A - A+A) I < 1 (i = 1,*** ,n). 

(Indeed the nonzero eigenvalues of (aAA* - AA+), (aA*A- A +A) are identical.) 
With the lubs-norm [3, p. 44] in (4) and (5), both hold because of (10) and (11). 
(Actually (10) and (11) suffice for the convergence of (8).) 

Now the process (1) initiated with: Xo = aA* retains the form [1, Eq. (12)]: 

(12) Xk = CkA (k = 1, 2, . . ) 

and since 

(13) A*PR(A) = A* 

it follows that: 

(14) Xk(2PR(A) - AXk) = Xk(21 - AXk) (k = 0, 1, ... 

and the convergence of (8) follows from that of (1). Q.E.D. 
Remarks. 
a) Similarly, the sequence defined by 

(15) Xk+l = (21 - XkA)Xk (k = 0,1, ... 

with Xo = aA*, converges to A+. 
b) In using the method (8) it is not necessary to compute Xi(AA*): Writing 

AA* = (bij) (i, j = 1, * ,m) 

we conclude from the Gershgorin theorem, [3] that: 
m 

Xi (AA*) < max {m E bij 
i=l, * * * ,m j=l 

Condition (6) can therefore be replaced, e.g. by 

2 
(16) m{ 

i=l,***,'m j=1 

c) Examples and applications will be given in [2]. 
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